Software Design Pattern
Process for KUPE

Software Design Pattern

In software engineering, a software design
pattern is a general reusable solution to a
commonly occurring problem within a given
context in software design.

Design patterns are formalized best practices that
the programmer can use to solve common
problems when designing an application or
system.

Ref. https://en.wikipedia.org/wiki/Software_design_pattern

Software Design Pattern with RUP

Software Design Pattern= RUP tHA & &2
Requirements2} Analysis & DesignO| Al =2t &

Phases
Disciplines || Inception|| Elaboration || Construction || Transition

Business Modeling
Requirements

Analysis & Design

Implementation
Test

Deployment

Configuration
& Change Mgmt

Project Management
Environment

Const || Const | Const || Tran |Tl'an|
Initial Elab #1 | | Elab #2 2 U N o et

Iterations

Apply software design patterns to KUPE

Software Design Pattern= KUPEO| X &3t= 5% 751 =

Quality Requirement= BHSA|7|7| f&0|2t MZtat
Quality Requirement=2 H2de 2 S MEHS 7HE = US
(2t A, Quality RequirementE =0t Y S AJ|SD,
KUPEZ2| Case Study?2| Printer System0] ZFEtHS| M &5
EE:' . o|-
1000 plan and 2 : 3000
Elaboration — Build -—> Deployment

Printer System

— X

Manager

Apply SDP to KUPE

Non-functional RequirementsE F==35}7| %5l A
AT EQN SEO| Lot =X EZQ! ISO/EC 91260 [t}
= & (Quality)2 M Eotafngt

. . . .
Activity 1003. Define Requirements Activity 1003. Define Requirements
+ Functional requirements + Steps
— A requirement that specifies a function that a system or system 1. Gather all kinds of useful documents
component must be able to perform 2. Write an overview statement (objective and name of the system, etc.)
— Analyzed and Realized in Use-Case model 3. Determine customers who use the product
4. Write goals of the project
5

. . . Identif tem functi
» Non-functional requirements SNty system functions

— Constraints on the services or functions offered by the system as
timing constraints, constraints on the development process,

* Functional requirements
+ Add function references(such as R1.1, ...) into the identified functions
+ Categorize identified functions into Event, Hidden, and Frill

standards, etc. 6. Identify system attributes
— Portability, Reliability, Usability, Efficiency(Space, Performance) - Non-functional requirements
. . C izati
— Delivery, Implementation, Standards 7. Identify other requirements (Optional) ateg:"zlzmnrf ;
. . . : } . . should perform
— Ethical, Interoperability, Legislative(Safety, Privacy) * Assumptions, Risks, Glossary, etc. Event visible to users

Hidden should performs /
invisible to users
+ Recommended reference : |IEEE Std. 830-1998 -

Frill optional

ISO/IEC 9126

ISO/IEC 9126 =2 1 &

1998 H = 0| 1SO2t IECO|| |5l X|Qtel & B 2 A
A2TEQN EEH CS= ot 79X EFE

O|Z ISO/IEC 25010:2011 2 CHH|E!.

IL =
2u oy

9126ZE 22 HAM= BES EA UHER 22
|.

F2F Lh 50l s &
- £ Z(Characteristics) &2 #
O T E

IN I‘NI-O

FEMNES LHE QL 218 MetricsOll 2B EH

Ref. 24 884X

671l 2| &% (Characteristics) 52 FA|
£ 4= (Sub Characteristics) 2

EoiE - 887 =gtz

ISO/IEC 9126

Functionality

Kilo

__o“_

EoiE - 887 =gtz

Z XD E(1SO/IEC 9126)
Product’s View of Quality

Functionality

Reliability

Suitability

Accurateness

Interoperability

Compliance

Security

Usability

Maturity

Fault Tolerance

Recoverability

Understandability

Learnability

Operability

Efficiency

Portability

Maintainability

Time Behavior

Resource

Behavior

Analyzability

Changeability

Stability

Testability

Adaptability

Installability

Conformance

Replaceability

Sub-

characteristics

EoiE - 887 =gtz

it K =
=222

ISO/IEC 9126

(Quality Model) - 1

& gt S & Melsts 7|52 Mt nt =)
Suitability of Fek2 o[x|l= H4
AT E Q0] pR= 2fo|st Aufut gof E= W Estet He| =g
JFEM = Accurateness | O g&t= D|X|= &4
7|=A A0[M 2 MS2HM M|zl A= EQofe} AT AtE5HE SEof
F ti lit = S ZA|7| | Interoperability | H &S 0|X|= £4
unctionality | — les =] Ad T oala BHE 37 sX ZHe Ml K|
I__';OJE\ 1—7-|o —U—_I'__,tlz|’ ﬁgjﬂ-_lj?zlo = — OOHI_H-
Mze 4= Compliance | 22 =335l &4
ol 2
M= e H ol Ad SEZES oo = 0[Lt H|ofE ol At E
Sec;r?t 1o|lE MHSHA| A 25 AE HeE 7
Y e SEoll Yoe FE &Y
AT E90f Meg S 5HK| R3hD HolRle Aol m 2o A7
1 T = — = —
= xi AL Maturity = &0 BlEof| gdeks = &4
7|' o o — _ ~
slol| M EX ST EQ o] LRI AT AL Hal| & A4S
WNERS 7|7+ Eof 25 584 g HAo A7 M-S e =2 ™ol
gl ol i Fault tolerance | 2 &2 2 &5tz 2o Y& 0lx
Reliability | &8 T& Z o
Aoz =
Olg22 3 X}t AKX oSt Hb= = =235
Cea enability | 2& SF olate 2 chAl SxtshE 53} of
= S5 Recoverabllity | yy g o 51 A 7kn} iwatof of3t2 ofxls &4

Py
@
AT
rx
olo
ol
>
I5]
m
0

o7& - 27| =Xtz

Xl

IT
[=]=

2 (Quality Model) - 2

= xi = o151 Al LZEofof JHE B 28 8 S ofsshe
T S o Lirs ol 2238t ALEAe] 3o A& o|x= &
ol A A~ Understandability A
Al2A EAOS
U ;IC’ M0 HY 554 SZEolo & Y S 12 25|= O
sability | 5 o551 Learnability | 2R3 ARXIe| w20 HEte o|x|= &M
7| A et -
C= gy 24 ATEQOE 2Ystn &elst= o Zest
e e Operability AEXR 3ol Peks o)X= &4
E8 =N s 52M TEZEQoLY|sE sdE W HEe SH
b = <. AZE MElEe, MEAIZt2 HaE £ A=
off Al A& Time behavior | _ ..o, L:, 3k§|’3|ili g o=y
_— 0 =
284 A 5HE A
11 MNAHSE M e sSM
Efficiency | RE2 © '8 a8S | ameqoirlolse suE o M ool X}
o= X-”_CID_ Resource ol A =L= =g o SkEe Ol x|l = &= A
SF A O] = Bh . EE—I—EOI_OﬁO‘HOOE |X|tﬁo
o o= U— ehavior
g7
[|
Ref. @ HSEATEQIO|E - BE7| =itz

%II

ISO/IEC 9126

2 28 (Quality Model) - 3

AT EQNE A A Zoff delnt Aerg EAM st =Hslof &
o A =e HH o XolL= O EHRsH 2o AdEs
20+ Analyzability | 552 X, 0 S eEE
SHE 2 9 2= 54
=X 5™t H{ 74 Ad SZEOE L M, o E AL o,
S ~Ho AT ATEQN SxtslAS HAS I E=
=) 2 A o= To Changeability = o=
TAETS) Dy 2ol @atg olxE £
Maintainability | s5y0151 5 ohA | SAoz ofaksix] 2ot 2H) B 9
2, QFALE Stability ool &2 olxl= 4
ot =2, 7|
— _|_C> - J— =1 L _— =
I A8 THE LTEQOS ABste o Hest
o — =1 =24 odSE2 Olxlye &AM
HE0| o\t Testability o S 0|x= HA
x4 2 M e 2ot AHo|Lt B A AT E
Adaﬁtczll:c;ilit A7t &t etd g vhE 5 U= 7S
P Y| Mol gst2 ozl &4
AT E2NO]7 ; — — — —
oAl A ae §pilz|i> F 44 SY gtdol| AZEo S X E
1o e~ Installability | St =20 F&S o|x= &4
Portability | = OIHE = x| ~mEgof7} ol AlM T BetE mEO[L
M= e Conformance |&& & w2 =X| HEIH= &4
CH x| A A ~2ZEQOE SEHtCE 2ZE 0
Replaceability | 2 B M & = JU=X| LIEI = &4

Ref. 2SS EATELO{71E - T

Apply to Printer
System of Case
Study(1)

and Elaboratio

Non-Functional Requirements 37}
KUPEZS]| Activity 100101 OF2{F 22 Non-Functional RequirementsS

=7t
. . XFON EFAH A x L
Activity 1001. Define Draft Plan SO =< |E?|'<1;LEH chE N
T2E A|AHES BHE OFSHTL
Non-Functional Requirements < =7} HEX| e B Ty 250
_ olal =xlo =83 Z=0}0} Btot =0 Z== 7| ¢
— Qlxf 7tHe meefor it CrFok 22 E (Samsung,
- Z2HE 80| HO{0f Thot HP&)| ZzIHE =7t &
2ty = A0 OFetLY.
Resource Z2IE| S R ZSHs SlA
— Human Efforts : 1-0.5 M/M CHASIH, S AN E
— Cost: 250,000 Cltst mElo| =xs)7|jE2 <l

Quality Requirements with ISO/IEC 9126

Quality Requirements Description
QR 1: Reliability — Maturity(‘d =)

* of Z5tX| Zo5tA HOtA= o W20 7= ol =0 s F= &£

0

QR 2: Maintainability — Changeability(4 75 4)

© ADEQIOIS SHT O, HOIS HAT O, AZEQ0| S5 BHES W

1L
ity
=

= -1 =
L =L O - A
Es= 3o g2 0|X= &4
* Printer SystemOfl= Ctst H 2l E(Samsung, HPS)2| Z2IE{ S F71 U 2H&s 4= QIojof M2
CHE At H ZEOZ MX|2 E XAst HEUO R A[AR0| HEJHsSoFet

Define Requirements F7}

KUPEZ2| Activity 10032 Functional Requirements(Activity
10031)2} Quality Requirements(Activityl0032) =2
Lt+O{ A OF2fer 20| =7red

Activity 1003. Define Requirements
Activity 10031. Functional Requirements

Crct + | uncion | category

R 1.1 System Access Event
R1.2 Make Account Event
R 1.3 Identify Balance Event
R 1.4 Recharge Balance Event
R 2.1 Request Print Event
R 22 Check Balance Hidden
R 3.1 Identify Paper Event
R 3.2 Recharge Paper Event
R33 Identify User Event
R34 Identify Money Event

Activity 1003. Define Requirements

Activity 10032. Quality Requirements

QR 1.1 ZHOf 2HAA| 01F L2 Z2le A| A2 HEoFSCE

i | =
— aA = b
QR21 IEHE B2lsls ZES ALB HEORT M S UTE

mr

Architecture
Analysis & Design

Architecture Style(Pattern) 15}

= Kl A CHA

QAN SF5Z = U= 2SI ET E
HEior] Aoigh = A= OF7|HA ﬁEf%‘(OHIE—*W
ojf B)= =4 oHCt

=3
AlLtz| 2
=N XXX XXX
== XXX \
2T]
<‘;l -------
—> A A
(@] A L e
TAL 4 xg»%) R .
ob7| 8% Sl

Ref. 2488 AT EQIOP7E - DIE 7| +=XtE

Architecture Style 155

Manager User

S A

Layered Architecture Style

Provided Interface

Layer 2
Required/Provided Interfaces

¢

Provided/Required Interface

Communication Handler

Management System
Layer |

Required/Provided Interfaces

¢ Printer Device Handler

Provided/Required Interface
-7

Layer 0
Provided/Required Interface
Printer Devices
Ref. 2488 AT EQIOP7E - DIE 7| +=XtE

Architecture Design 20!

AL

E

Functionality

Reliability

Usability

Efficiency

o O O|l& - . . =)
ot S 0= S Q| =
At S TS 2 2o Design Guidelines= 2t
Suitability —— Command Characteristics
— Accurateness — lterator — Composite E— teristi
ub-characteristics
— Interoperabilty —— Adapter — Facade
. . pattern
— Security — Singleton — factory
— Compliance —— Adapter
Maturity —— Observer Maintainability Analyzability —— command
— Fault Tolerance Decorator — Changeability —— factory
— Recoverability —— Adapter — Memento — Stability singleton
Understandability —— Facade o TeStabI“ty o factory
— Learnability — strategy
Portability Adaptability —— adapter
Operability — decorator
— Installablity — bridege
Time Behavior —— Observer —— Conformance facade
Resource -
SO command — scheduler Replaceability factory

Apply to Printer
System of Case
Study(2)

Phase: Analysis & Design

Architecture Analysis

Printer System2| Subsystem= High-Level +Z & H 2

Subsystem Type Categorization S &

Boundary Module
* QFE AL QIHEO|AE Y
Manage Module
* Boundary ModuleS S3dff &
NMel g
Device Module
* YXe AHHO|AE HESt= 25

X
o

rlo
50)

=]
=

I

Boundary

Devices

Architecture Analysis

Printer System2| Subsystem= High-Level +Z & H 2

= O
7| s @A S E AN 0| h2f Manage 228 F/12| ME
D=z 22
. th
® Functional Boundary
® Non-Functional l
[4]
Manage
Al
Functional
T (EHOf LM AL 0.1F o l
2IE] A| AH S HE|olS
< aimatof e A — SR (I gl
: EEF.O:E_I = Non-Functional —E—%.Z‘-IE%.:F “.jE?I;' EEE ;—fé
2T UALT gt =2
OF=0{oFStE})E BHESl Of
St= A EA|AHE EFY

l

[al
Devices

Architecture Design 20!

E () O 0Ol& . . . o =
=2 QTAIE = BFE S ?|e Design Guidelines= 20!
Functionality Suitability —— Command QR2 1(EE._|E-|§ 'El'E| _5|'E —'?'—-E—%
K AT MPORE XHES 4
or — Composite =
QRLL(ZON LAl 0.1% LI2 P ses gdstpRs
ZRIE AAES HRopsich)S | | g 1S O OfotCt)E THE Sl OF S
QHZ 3 0F s MEA| A ELY e MEAISE B
Security — Singleton — factory
— Comp —— Adapter
Reliability Maturity —— Observer Maintainability Analyzability — comm{nd
— Fault Tolerance Decorator I~ Changeability — factory
— Recoverability —— Adapter — Memento — Stability singleton
Usability Understandability —— Facade — Testability — I
— Learnability — strategy
Portability Adaptability —— adapter
Operability —— decorator
— Installablity — bridege
Efficiency Time Behavior —— Observer — Conformance facade
Resource -
Behavior command - — Replaceability —— factory

Architecture Design & &

KUPEZ2| Activity 20450] 24t Z1E M -&otC},
ManagementSystemOH

* Q112 BEE7|8 SystemS FICHSI= HAE T —
°* Q212" -“0F7|-?—|3H CHASH PrinterE A {E = UEE Boundary
Factory Patterns At-&dfOFgt

- - f - - I - n
Activity 2045. Define Design Class Diagrams ——
@ — i
Account
User Q
-d: String Manager
+pw: String
+Balance: int +d: 5tring
w: Strin
+check(id: Sting, pw: String): boolean = g - - v
+check(id: Sting): boolean +check(id: Siring, pw: String): boolean o]
+getBalznce(): int +check{id: String): baolean
+rechargeMoney (money: int): void -
vt e Non-Functional
+payBalance(money: int): void
Frinter
+paper: int
+print{paper: int}: void
+HjetPaper(: int
+chargePaper{paper: int): void L ManagementSystem
+alProfit: nt AccountManager
+eurrentMode: String +userList: ArrayList<User=
+currentSaeen: String +manager: Manager
+reglegin{d: String, pw: String): veid ‘+aurrentiogin: Acoount i
+reqlogout(): void +checkLogin(d: String, pw: Sting): boolzan
Hriit(): void . | —— | tmakeAccount(id: String, pw: String): boolean ,lll
+reqMakeAcc(): void +showBalance(): int
#er—mcrnmfgdr Siéing. pw: String): void +rechargeMoney(money: int): void D -
+regBalance(): voi +checkBalance(paper: int): boolean
+reaRecharge(money: int): void +print(paper: int): void evices
+regPrint{paper: int): void +showLserInfo(): void
+regldentifyPaper(): void
+reqCharge({paper: int): vaid
+reqUserInfo(): void
+regMoneyInfo(): void

Q&A

Design Pattern
Details

AR

Functionality

Reliability

Usability

Efficiency

Suitability —— Command
Accurateness — lterator
Interoperability —— Adapter
Security — Singleton
Compliance — Adapter
Maturity —— Observer
Fault Tolerance Decorator
Recoverabilty —— Adapter
Understandability —— Facade
Learnability — strategy
Operability — decorator
Time Behavior —— Observer
Resource
Behavior — command

Characteristics

— Composite o
Sub-characteristics
— Facade
pattern
— factory
Maintainability Analyzability —— command
— Changeability —— factory
— Memento — Stability — singleton
— Testability —— factory
Portability Adaptability —— adapter
— Installablity — bridege
— Conformance —— facade
[— Replaceability = —— factory

Command Design Pattern

definition
The Command Pattern encapsulates a request as an object, there by

letting you parameterize other objects with different requests, queue or
log requests, and support undoable operations.

Detalls
Command - declares an interface for executing an operation;

ConcreteCommand
 Extends the Command interface
* |t defines a link between the Receiver and the action.
* Client - creates a ConcreteCommand object and sets its receiver,

sInvoker - asks the command to carry out the request;

*Receiver - knows how to perform the operations;

Command Design Pattern

— FE—— Command
i nvo
——

|

I +exeaitel) void

|

| I\

| << [natarntiates:

|
W "
Receiver ConcreteCommand A
receive execute() {
< -state;int receiver.adion();
h

+action): void +exectie() void L

The Client asks for a command to be executed. The Invoker takes the command,
encapsulates it and places it in a queue, in case there is something else to do first,

and the ConcreteCommand that is in charge of the requested command, sending
its result to the Receiver.

Summary

Advantage

A command object could be sent across a network to be executed
elsewhere or it could be saved as a log of operations

Disadvantage

Need to issue requests to objects without knowing anything about
the operation being requested or the receiver of the request.

Example

« The waiter or waitress takes an order or command from a customer
and encapsulates that order by writing it on the check.
The order is then queued for a short order cook. Note that the pad of

"checks" used by each waiter is not dependent on the menu, and
therefore they can support commands to cook many different items.

Customer Waiter Order Cook
client director command recejver
Crder()
=
FlaceCrder()
o
Order
Chicken salad Cook() o
Fasta =
Ice ten
Cheese cake

Observer Pattern

Definition

‘Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified
and updated automatically.

Detalls

Subject

has a list of observers
Interfaces for attaching/detaching an observer

Observer
An updating interface for objects that gets notified of changes in a subject

ConcreteSubject
Stores “state of interest” to observers
Sends notification when state changes

ConcreteObserver
Implements updating interface

Observer Pattern

Subject Observer
it
attach{Observer) update()
deatach(Observer)
notify()
AN
AN
ConcreteSubject ConcreteObserver
getState() update()
setState()
ohserverState

subjectState

Observer Pattern - Consequences

Advantage

Loosely Coupled
Reuse subjects without reusing their observers, and vice versa
Add observers without modifying the subject or other observers

Disadvantage

®A large monolithic design does not scale well as new graphing
or monitoring requirements are levied.

Observer Pattern - Example

Observers

Subject

— requests, modifications
""" > change notification

Decorator Pattern

Definition
« the decorator pattern allows behavior to be added to an
individual object. without affecting the behavior of other objects
from the same class.

Details

Component
« Interface for objects that can have responsibilities added to them

dynamically.

ConcreteComponent
« Defines an object to which additional responsibilities can be added.

Decorator
« Maintains a reference to a Component object and defines an interface that
conforms to Component's interface.

-Concrete Decorators
« Concrete Decorators extend the functionality of the component by adding
state or adding behavior.

Decorator pattern

winterfacew
Cormponent

+ operationg

Concrete Component winterfacews

+ operation
+ aperationg)

Oecor =tar o

ConcretelDecorator

- ddded State

+ operationg)
+ addedBehawvioun

summary

Advantage

Attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for
extending functionality.

Disadvantage

You want to add behavior or state to individual
objects at run-time. Inheritance is not feasible
because it is static and applies to an entire class.

Adapter pattern

Definition
Adapter pattern allows the interface of an existing class to be used as
another interface.

It is often used to make existing classes work with others without
modifying their source code.

Detalls

Target - defines the domain-specific interface that Client uses.
Adapter - adapts the interface Adaptee to the Target interface.
Adaptee - defines an existing interface that needs adapting.

Client - collaborates with objects conforming to the Target
interface.

Adapter pattern

cd: Adapter Implem entation - UML Class Diagram)

Cliemt

Targat

adaptee spedficRe questi

+reguest) vokd

Adapter

Adaptes

+reguest{ivoid

+zpedfick equest(T void

summary

Advantage

®Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn't
otherwise because of incompatible interfaces.

Disadvantage

®|t unnecessarily increases the size of the code as class
Inheritance is less used and lot of code is needlessly
duplicated between classes.

Example

= Socket wrenches provide an example of the Adapter.

= Obviously, a 1/2" drive ratchet will not fit into a 1/4" drive socket
unless an adapter is used.

= A1/2" to 1/4" adapter has a 1/2" female connection to fit on the 1/2"
drive ratchet, and a 1/4" male connection to fit in the 1/4" drive
socket.

Ratchet

2" drive (male)

Socket Adapter

v4" drive (female) ¥2" drive (female)
¥a" drive (male)

)

1l B9

Facade Pattern

Definition
Facade pattern is a software design pattern commonly used with object-
oriented programming

Detalils

The diagram definition of the Facade pattern is quite simple - all you're
really doing is insulating client from the subsystem

Facade

Y

includes includes
! ~‘.
£ “
Fi Y

Package1 | Package2

summary

Advantage

* Provide a unified interface to a set of interfaces in a subsystem. Facade
defines a higher-level interface that makes the subsystem easier to use.

Disadvantage

« It does not prevent sophisticated clients from accessing the underlying
classes

* Note that Facade does not add any functionality, it just simplifies
interfaces

Example

The consumer calls one number and speaks with a customer service
representative.

The customer service representative acts as a Facade, providing an
interface to the order fulfillment department, the billing department,
and the shipping department.

Customer service Facade

~

W L4 v

Crder fullfillment Billing Shipping

Head First Design
Patterns

Memento pattern

Memento pattern-definition
Definition

The memento pattern is a software design pattern that provides
the abllity to restore an object to its previous state (unto via

rollback).

Detalls

‘Memento
« Stores internal state of the Originator object. The state can include any

number of state variables.

*Originator
» Creates a memento object capturing the originators internal state.
» Use the memento object to restore its previous state.

«Caretaker
» Responsible for keeping the memento.
« The memento is opaque to the caretaker, and the caretaker must not

operate on it.

Memento pattern-details

Structure

Originator

-state

+setiiementol)
+CreateMementa()

return new Mementc(state) :Ilw

Memento

-state <— Caretaker

+getState()
+setState()

atate = m-»getitate(); B}

SUMMARY

Advantage

Promote undo or rollback to full object status.

Disadvantage

Resource consumption is too large, if the class member
variables too much, it will take up a lot of memory

Iterator Pattern

Definition
lterator pattern is a design pattern in which an iterator is used
to traverse a container and access the container's elements

Detalls

The iterator pattern decouples algorithms from containers; in
some cases, algorithms are necessarily container-specific
and thus cannot be decoupled.

» Iterator (Abstractiterator)

Aggregate Client Iterator ' . . -
o defines an interface for accessing and fraversing elements.
+Createlterator() +First()
e + Concretelterator (Iterator)
*C""}ﬂ“‘*m‘} o implements the Iterator interface.
e P o keeps track of the current position in the traversal of the aggregate.

+Createlteratorn(}

+ Agoregate (AbstractCollection)
l o defines an interface for creating an lterator object

return new Concretellerator this) 'j + ConcreteAggregate (Collection)

o implements the Iterator creation interface to return an instance of the proper Concretelterator

Iterator Pattern

Advantage

It is easier to implement different algorithms to reuse the same
iterators on different aggregates and to subclass the iterator in
order to change its behavior

Disadvantage

The main disadvantage is that the iterator will have to access
internal members of the aggregate

Iterator Pattern

Example

Consider watching television in a hotel room in a strange city

®* When surfing through channels, the channel number is not important,
but the programming is. If the programming on one channel is not of
interest, the viewer can request the next channel, without knowing its

number.
ChannelFrequencies Channeliterator
+methodCfTraversal() +nexil)
- +previousi)
w' 7
TunedChannel }V
ChannelSelector
€T - m e e T
+methodOfTraversali)

Composite Pattern

Definition
Composite pattern is a partitioning design pattern
Details

The composite pattern describes that a group of objects is to be
treated in the same way as a single instance of an object

The intent of a composite is to "compose"” objects into tree
structures to represent part-whole hierarchies

«Component - Component is the abstraction for leafs and composites. It
defines the interface that must be implemented by the objects in the composition.

Leaf - Leafs are objects that have no children. They implement services
described by the Component interface

Composite - A Composite stores child components in addition to implementing
methods defined by the component interface. Composites implement methods
defined in the Component interface by delegating to child components.

*Client - The client manipulates objects in the hierarchy using the component
interface.

Composite Pattern

Client Zdinterfacess 0
““““ :,;' Component N

doQperation() ; void

o

%
; . x “arealize
2dredlizesr '

!
{ 1\ ‘1
!

Compozite
Leaf

_ _ doOperation() ; woid
doQperation() ; woid

addComponentcomponent : Component) : void

removeComponentcomponent: Component) : void
getChild(index : int) : Component

Composite Pattern

Advantage

The Composite pattern makes the client simple:

® Clients use the Component class interface to interact with
objects in the composite structure

®* If call is made to a Leaf, the request is handled directly

Disadvantage

Once tree structure is defined, the composite design makes
the tree overly general

In specific cases, it is difficult to restrict the components of
the tree to only particular types

Composite Pattern
Example

In a small organization, there are 5 employees
® At top position, there is 1 general manager

® Under general manager, there are two employees,

® One is manager and other is developer and further manager has
two developers working under him

® We want to print name and salary of all employees from top to

bottom
Tree structure for example:
Employee
+getName()
+getSalary()
General Manager +print()
+Add(Employee)
+Remove(Employee)
+GetChild(int)
children
Manager Developer
Developer Manager
+getName() +getName()
+getSalary(+getSalary()
+print() +print()
Developer Developer +Add(Employee)
+Remove(Employee)
+GetChild(int)

Singleton Pattern

Definition
Singleton pattern is a design pattern that restricts the instantiation of a
class to one object

Detalls

Ensures that a class has only one instance and provides a global point
of access to it

It's important for some classes to have exactly one InStance

* The instance class variable holds our

one and only instance of Singleton

Singleton
static getinstance() : Singleton O ---- | return instance \ « The getlnstance() method is static and
static instance : Singleton public

* Return a instance

* You can conveniently access this
method from anywhere in your code
using Singleton.getinstance()

Singleton Pattern

Advantage

Ensure a class has only one instance, and provide a global point of
access to it.

Encapsulated "just-in-time initialization" or "initialization on first use".

Disadvantage

Unit testing is more difficult (because it introduces a global state
into an application).

Singleton Pattern

Example

There can be many printers in a system but
there should only be one printer spooler

Singleton::PrintSpooler

-PrintSpooler() «create»
+getinstance(): PrintSpooler

SingletonHolder |
-instance: PrintSpooler

